2016-17 Catalog

Electrical Engineering

Courses

ELEN 2425. Electrical Circuit Theory. 4 Credit Hours (Lecture: 3 Hours, Lab: 3 Hours).

Resistive circuits: circuit laws, network reduction, nodal analysis, mesh analysis; energy storage elements; sinusoidal steady state; AC energy systems; magnetically coupled circuits; the ideal transformer; resonance; introduction to computer applications in circuit analysis. Prerequisites: PHYS 2426 or concurrent registration; MATH 2414 or concurrent registration. Lab fee $2.

ELEN 2448. Introduction to Digital System Design. 4 Credit Hours (Lecture: 3 Hours, Lab: 3 Hours).

Combinational and sequential digital system design techniques; design of practical digital systems. Credit for both COSC 2448 and ELEN 2448 will not be awarded. Prerequisite: One semester of programming language. Lab fee $2.

ELEN 3310. Power Systems Engineering. 3 Credit Hours (Lecture: 3 Hours, Lab: 0 Hours).

Introduction to the generation, transmission, distribution and utilization of electric power, along with the electrical devices connected to such systems including generators, motors and transformers. Topics include: fundamentals of electric power, basic components of power systems, three-phase systems, transformers, electric machines, AC and DC motors, generators, power generation and distribution, power plants, transmission lines, and renewable energy systems. Prerequisite: ELEN 2425; MATH 3306 or concurrent registration.

ELEN 3314. Signals and Systems. 3 Credit Hours (Lecture: 3 Hours, Lab: 0 Hours). [WI]

Modeling and analysis of electrical and mechanical systems using Laplace transformation methods; transient and steady-state analysis; Fourier series; Fourier transform; elementary feedback. Prerequisites: ELEN 2425, MATH 3306 or concurrent registration.

ELEN 3320. Engineering Analysis Techniques. 3 Credit Hours (Lecture: 2 Hours, Lab: 3 Hours).

This course covers the applications and implementation of numerical algorithms commonly encountered in engineering and scientific analyses. Topics such as statistical analysis, analysis of linear and non-linear systems, optimization and linear programming, numerical differentiation and integration, and analysis of differential equations will be covered. Use of MATLAB (or other similar computational tools) for performing computational analysis and generating graphical interpretations of the results is also included. Prerequisite: ENGR 1212 or one semester of programming; MATH 3306 or concurrent registration Lab fee: $2.

ELEN 3332. Electromagnetic Field Theory. 3 Credit Hours (Lecture: 3 Hours, Lab: 0 Hours).

This course provides the background necessary to formulate and solve electromagnetic problems relevant to many fields of electrical engineering such as RF and microwave circuits, photonics, wireless networks, computers, bioengineering, and nanoelectronics. Topics include: static electric and magnetic fields; Maxwell’s equations in integral and differential forms; wave propagation; reflection and refraction of plane waves; transient and steady-state behavior of waves on transmission lines. Prerequisites: PHYS 2426; MATH 3306 and MATH 3433 or concurrent registrations.

ELEN 3360. Microwave Theory. 3 Credit Hours (Lecture: 3 Hours, Lab: 0 Hours).

This course covers the key concepts related to the analysis and design of microwave systems at the subsystem and component level. Topics include: waveguides and wave propagation on transmission lines, including stripline and microstrip structures; microwave network analysis; impedance matching techniques; analysis and design of microwave resonators; power dividers, couplers, and hybrids; microwave filters; noise and distortion in microwave circuits; an introduction to microwave system implementation considerations. Prerequisites: ELEN 3314, ELEN 3332.

ELEN 3443. Computer Architecture. 4 Credit Hours (Lecture: 3 Hours, Lab: 3 Hours).

Hardware and software structures found in modern digital computers. Instruction set architecture, hardwired design of the processor, assembly language programming, microprogramming, I/O and memory units, analysis of instruction usage, and hardware complexity. Credit for both COSC 3443 and ELEN 3443 will not be awarded. Prerequisite: COSC 2448 or ELEN 2448. Lab fee $2.

ELEN 3445. Electronics I. 4 Credit Hours (Lecture: 3 Hours, Lab: 3 Hours).

A first course in microelectronics intended to give students an introduction to the analysis and design of analog and digital integrated circuits. Topics include: semiconductor physics theory and operating principles of the p-n junction, MOS field effect transistor (MOSFET), and bipolar junction transistor (BJT); operational amplifiers; large- and small-signal equivalent circuit models of diodes, MOSFETs, and BJTs; single-transistor amplifier configurations; digital logic circuits. Prerequisite: ELEN 2425 Lab fee: $2.

ELEN 4336. Solid State Physics. 3 Credit Hours (Lecture: 3 Hours, Lab: 0 Hours).

The basic ideas of physics are applied to the understanding of the properties of crystalline materials to include the definition of such materials, electrical and thermal conductivity, heat capacity, crystalline binding, the nature of metals, insulators, and semiconductors, dielectric properties, and magnetic properties. Credit for both ELEN 4336 and PHYS 4336 will not be awarded. Prerequisite: PHYS 3334; MATH 3306 or concurrent registration.

ELEN 4350. Communication Systems Theory. 3 Credit Hours (Lecture: 3 Hours, Lab: 0 Hours).

Introduction to the frequency and time domain; modulation; random signal theory; network analysis using nondeterministic signals; basic information theory; noise. Prerequisites: ELEN 3314 and ELEN 2425.

ELEN 4355. Digital Signal Processing. 3 Credit Hours (Lecture: 3 Hours, Lab: 0 Hours).

Introduction to discrete-time signal processing and discrete-time systems. Topics include: discrete-time linear systems, difference equations, z-transforms, discrete convolution, stability, discrete-time Fourier transforms, analog-to-digital and digital-to-analog conversion, digital filter design, discrete Fourier transforms and fast Fourier transforms, spectral analysis, and applications of digital signal processing. Prerequisite: ELEN 3314.

ELEN 4441. Microprocessor System Design. 4 Credit Hours (Lecture: 3 Hours, Lab: 3 Hours).

Introduction to microprocessors; 8/16 bit single board computer hardware and software designs; chip select equations for memory board design, serial and parallel I/O interfacing; ROM, static and dynamic RAM circuits for no wait-state design; assembly language programming, stack models, subroutines and I/O processing. Credit for both COSC 4441 and ELEN 4441 will not be awarded. Prerequisite: ELEN 2448 or COSC 2448. Lab fee $2.

ELEN 4443. Linear Control System Design. 4 Credit Hours (Lecture: 3 Hours, Lab: 3 Hours).

Application of state variable and frequency domain techniques to modeling and analysis of single input, single output linear control systems; physical implementation of control systems by integrating sensors, actuators and other control system components; use of software design tools. Prerequisite: ELEN 3314, ELEN 3344 and MATH 3306. Lab fee $2.

ELEN 4446. Electronics II. 4 Credit Hours (Lecture: 3 Hours, Lab: 3 Hours).

A second course in microelectronics emphasizing the analysis and design of analog integrated circuits. Topics include: MOSFET and BJT fabrication technologies; current mirrors and biasing techniques; amplifier topologies; frequency response of analog integrated circuits; feedback, stability, and amplifier compensation techniques; output stages; noise in integrated circuits; linear integrated circuit applications. Prerequisites: ELEN 3445 and ELEN 3314 Lab fee: $2.